A static analyzer for Industrial robotic applications

Avijit Mandal, Meenakshi D’Souza
IIT Bangalore, India
Email: {avijit. mandal, meenakshi}@iiitb.org

Abstract—In this paper, we describe a static analysis approach
to detect potential runtime errors for a programming language
that is used to program industrial robots. The language we deal
in this paper is RAPID, a high level programming language for
programming ABB industrial robots. The presence of real-time
interrupts, exception handlers and complex data-types makes
it a difficult language for general purpose static analyzers.
The properties of interest include some generic programming
errors as well as some domain-specific properties that the robot
system must comply with. Generic programming errors include
properties like integer overflow, array access out of bounds and
division by zero. An example of a domain-specific property is
defining boundary limits for robotic arm movement. We have
developed a tool to detect these errors successfully in the presence
of real-time interrupts.

I. INTRODUCTION

Industrial robots perform tasks involving high degree of
repetition and accuracy in industrial settings. Such robots run
on a proprietary real-time platform, and are programmed using
domain-specific languages that specify the working envelope,
motion control and tasks for individual robots.

There are several proprietary robotics programming lan-
guages available: for example, ABB has RAPID [2], Comau
has PDL2 [10], Kawasaki has AS [16] and Universal Robots
has URScript [11]. Robots are programmed to perform various
tasks like pick and place, welding, path finding, moving
objects, monitoring and control, locating and sharing data, etc.
Typically, these programming languages have a list of custom
instructions and a program flow. Instructions are specific,
simple, real-time tasks for the robots. Program flow is defined
using commands similar to a high-level, imperative language.

Robots that are programmed using these languages are
subject to stringent safety regulations since most of them
operate in safety critical systems or environments. Commonly
used standard safety regulations include IEC 61508 [12] and
ANSI/RIA R15.06-1999 [13]. Compliance to these standards
is typically established through a combination of code review
and extensive (manual) testing. However, a more exhaustive
and efficient method for safety assurance is required as the
programs grow larger and more complex.

For software driven controllers, the notion of safety is
well developed. Stringent testing guidelines, program anal-
ysis to detect low-level errors and rigorous formal meth-
ods approaches help establish adherence to safety standards.
However, most of the tools that aid in such verification
and validation tasks are for general purpose languages like

TSreeja Nair is currently at Université Pierre et Marie Curie, Paris

Raoul Jetley, Sreeja Nair'
ABB Corporate Research, Bangalore, India
Email: {raoul jetley, sreeja.nair} @in.abb.com

C/C++, Java, etc., and not applicable for robotics programming
languages as these languages are proprietary and have their
own instruction sets. We aim to bridge this gap by introducing
a static analysis tool which can verify the adherence to safety
standards and also enable users to write their project specific
compliance rules, if any.

We consider the problem of detecting generic programming
errors and compliance violations in the robotics programming
language RAPID. Typical generic programming errors include
division by zero, unused variables, dead code, array access
out of bounds etc. Detecting such errors for a language like
RAPID involves working with control flow structure that runs
across several tasks spread out among different modules. There
are also specific real-time commands that deal with handling
of interrupts and exceptions.

Popular program analysis tools like Klocwork [7], CLANG
static analyser [6], Coverity [8], LDRA testbed [9] etc., cannot
be used for RAPID due to the presence of custom-made
instructions and real-time interrupts. These instructions are not
just procedures but, involve asynchronous interactions with a
real-time platform. We have therefore developed a comprehen-
sive program analysis framework for RAPID using the .NET
development platform. Our framework includes extracting the
AST and CFG for a RAPID project and performing detailed
data flow analysis on these.

Even though our analysis framework is developed specific to
RAPID, it can be used for any robotics programming language
with similar features. Detecting generic errors is the first step
towards building a robust verification and validation platform
for such programming languages ensuring conformance to
various safety considerations. For example, using our analysis
framework, we are able to prove that a robot arm will never
exceed the specified boundary for its movement, preventing
clashes with other robots/components.

The rest of this paper is organized as follows. Section II in-
troduces the RAPID programming language and its important
features through detailed examples. We present our program
analysis framework in Section III. An example that illustrates
the use of our framework is presented in Section II. Section IV
presents conclusion and future work.

II. RAPID

RAPID [2] is a structured programming language for
programming ABB industrial robots. A program written in
RAPID usually contains many high level instructions for robot
specific actions which abstracts the complex mathematical

calculations from the user. Apart from the instructions, the
language uses routine program flow in an imperative style
programming language.

Some common instructions found in a RAPID program
include:

e WaitTime 200; Instructs the robot to wait for 200
seconds before doing any assigned work.

e IDelete intr; Disables the interrupt variable intr.

e Movel pl,v500,2z10,tooll; Moves the position
of the robotic tool tooll linearly to the position pl,
with speed data v500 and zone data z10. This internally
calculates the torque that needs to be applied to each axis
(motor) to move linearly to the position pl.

RAPID supports several data types including constants,
variables (of type num, string, bool etc.), arrays etc. The
language also supports complex data types specific to robot
instructions. Two such data types, robtarget and pos are
described below.

e A declaration of the form

VAR robtarget pl5:=[[600, 500, 225.3],
(1, o, o, oy, (1, 1, o, 01, [11, 12.3,
9E9, 9E9, 9E9, 9E9]1];

defines the position of a robot. It is made of primitive
datatypes. As the robot is able to achieve the same
position in several different ways, the axis configuration
is also specified. The first tuple provides the position in
3-D space. The last three tuples specify orientation of the
tool, axis-configuration of the robot and the position of
external axes respectively [2].

o Consider the declaration of pos below.
VAR pos := [500, 0, 9401;
pos is used to define a position in the 3-D space where
the X-cordinate, Y-cordinate, Z-cordinate are 500, 0, 940
respectively [2].

Program flow in RAPID is specified using standard im-
perative language constructs including relational and logical
expressions, IF-THEN-ELSE statements and FOR and WHILE
loops. RAPID also supports handling of exceptions and inter-
rupts that alter the control flow of a program.

RAPID program is modularized by grouping code into
procedures, there is a main procedure in RAPID from where
execution begins. RAPID programs are highly hierarchical: A
project contains one or more fasks which control robot actions.
Tasks within a project can run asynchronously. RAPID code
in tasks are logically grouped into modules, which, in turn,
contain routines. Routines are the smallest unit of code, they
can be a function, a procedure or a trap routine. A function
provides a return value and a procedure contains a set of
instructions. Trap routines are executed with interrupts occur
and can alter the asynchronous execution of tasks.

The presence of real-time and domain specific instructions,
asynchronous tasks, exception handling and handling of hard-
ware interrupts make program analysis difficult for RAPID
programs. Standard program analysis tools will not work in
RAPID programs, even for detecting errors within a procedure.

PROJECT TestProject Project
TASK T1 Task|
[MODULE TestModule | ------ The main module Module

VAR num h; VAR num 11; VAR intnum sigl;

VAR robtarget ri1:=[[562,500,500],[1,06,0,8],[1,1,0,0],
[5ee,9ES, 9E9,9E9,9E9,9E9]];

VAR robtarget r2:=[[402,400,400],[1,0,0,0],[1,1,0,0],
[500,9ES, 9E9, 9E9,9E9,9E9]];

VAR robtarget r3:=[[302,300,300],[1,06,0,0],[1,1,0,0],
[5ee,9ES, 9E9,9E9,9E9,9E9]];

VAR robtarget r4;VAR signaldi dil;VAR tooldata tooll;

PROC main() Procedure
SimpleBug;
11 := h - 10;
SettoZero;
CONNECT sigl with SimpleError;
ISignalDI dil, 1, sigl;
r4 := [[h,h,h],[1, @, @, 0],[1, 1, @, @],
[5e@, 9E9, 9E9, 9E9, 9E9, 9E9]];
DrawShape;
ENDPROC

PROC SimpleBug()
l---- Potential bug
WHILE h < 3.4E+38 - 2 DO

PROC DrawShape()
Movel ri1,v50@,fine,tooll;
MovelL r2,v5e0,fine,tooll;

h 1= h+l; MovelL r3,v500,fine,tooll;
ENDWHILE MovelL r4,v5ee,fine,tooll;
ENDPROC ENDPROC
PROC SettoZero() TRAP SimpleError
11 := ©; h := h+2;

ENDPROC ENDTRAP
[ENDMODULE
ENDTASK
ENDPROJECT

Fig. 1: A sample RAPID module

We would like to observe that data structures like inter-
procedural call graph need to be created for asynchronously
running tasks, in the presence of interrupts.

Lllustrative Example

Fig. 1 shows a sample RAPID module illustrating some
of the features of the RAPID language. The module in the
figure consists of a main procedure and few other procedures
SettoZero, DrawShape, SimpleBug, and the trap rou-
tine SimpleError The variable (dil) causes the program
to alter its flow and execute the trap routine SimpleError.
Here dil represents a digital input signal and the in-built
procedure call ISignalDI [2] enables the interrupt sigl
when dil is set to 1. sigl is connected to the trap routine
SimpleError using CONNECT. This causes the trap routine
SimpleError to service the interrupt sigl.

III. ANALYSIS FRAMEWORK

Fig. 2 gives the overview of the tool. The tool has two
stages— the conversion stage and analysis engine. The con-
version stage deals with the extraction and pre-processing of
the program and the analysis engine performs the analysis.
The conversion stage is further divided into two — the extrac-
tion phase, which reads the project and converts it into the
intermediate data structures, and the processing part, which
parses the code and generates the control flow graph and call

Extraction

Organization Tree

/Units of //Organiza”on//\r’aﬂables/ /Scope table/ /Configuralion/
code units

Processing

Inter-procedural
CFG

Generate inter-
procedural CFG

Generate CFG

Analysis Engine

Rule Config
h
*7/ Rules /—>{ Analyze HWarn\ngs/

Generic Analysis Engine

: ‘ Pattern matching engine

Data Flow Analysis Engine

Fig. 2: Overview of the tool

graph. The two phases of the conversion stage populate the
Organization tree which gives an intermediate representation
of the project.

The organization tree contains a number of organization
units and each in turn can contain other organization units.
A code unit is a special organization unit which contains
code. The code is processed into an Abstract Syntax Tree
(AST), then into a Control Flow Graph (CFG) and stored
inside the code unit. The program flow is encoded as a call
graph and stored inside the organization unit. The AST, CFG
and program flow information are then used by the analysis
engine to perform the analysis.

The rules for the analysis are specified in a RuleConfig
file which allows the user to select the subset of rules as
per the project requirement. The analysis itself is performed
in two stages. Computation intensive operations like data-
flow analysis are performed in the first stage. Results of this
analysis are added as annotations to the organization tree
itself. The second stage performs a pattern check over the
organization tree including the annotations to detect anomalies
and generates a list of warnings for the user. The warnings are
classified into different levels depending on their severity, 1
being the most critical and 5 the least severe.

Data Flow Analysis.

We use a combination of traditional Data Flow Analysis
(DFA) [3] and abstract interpretation [1] to construct the
annotated CFG. The DFA algorithm implemented:

o Uses forward or backward as direction during the CFG
traversal

« Evaluates data flow facts at each program point as a semi-
lattice with the meet operator

o Uses worklist algorithm [3] to generate data flow facts for
each program point until the fix-point has been reached.

o Uses an abstract domain to represent the data flow facts at
each program point. To start with, we have used interval
abstraction [1] (¢ < X < b where X is a variable a, b
are to be determined by analysis) to represent the possible
values of every variable at each basic block.

o Uses widening and narrowing [15] operations to stabilize
the worklist algorithm at some program points.

Prototype implementation

We use the RobotStudio [14] platform API to extract the
XML file from RAPID code. We analyze this XML file
and store the results in a text file that records the warnings
generated. This tool works in a standalone mode, but can be
extended as plugin to the existing RobotStudio platform for
RAPID.

The properties of RAPID programs that can be checked by
our tool can be categorized in two types:

1) Syntactical rules checked using the AST generated by

our tool.

2) Rules defined on the CFG augmented with data as the

result of data flow analysis on the control flow graph.

Some of the properties that our tool can check are:

o Out of bounds array access — Perform data flow analysis
on the inter-procedural CFG to evaluate valid access to
array elements.

« Infinite loop — Check the value of a loop variable to assess
whether it exceeds the maximum limit for a numeric data-
type. We use widening and narrowing[15] techniques to
detect such errors.

« Division by Zero — Check the interval of the denominator
to detect whether it can evaluate to zero. Since we use
widening operators during data flow analysis, there can
be false positives in this detection.

o Unused variable detection — Checked against the def-use
chain derived from the annotated inter-procedural CFG.

o Unused code detection — Checked in two ways. The first
approach simply checks whether every basic block is
reachable from the entry node of the CFG. The second
approach uses the result of interval analysis to check
the branch and loop conditions to determine whether any
invariant condition leads to unreachable code.

o Boundary violation warning — Use results from interval
analysis to detect if the robot arm violates a specified
boundary. The boundary specification is stored in a con-
figuration file by the user.

« Late binding violation — Check if the procedure generated
during late binding is valid and is not already loaded in
memory.

Hllustrative Example for Error Detection

We now illustrate the use of our tool for the example
presented in Section II.

Entry <[0,0], [0,0]> SimpleBug
Entry < [0,0],10,0] > |“;"‘ < < [0, Max- 3], 0.0} |
[[Assignment < [0 Max - 2], [0.0]=]
\
Call: SimpleBug < [0,0]. [0,0]= |
Exit <[0, +oc], [0,0]=
SettoZero
Assggnment < [0, +oo|, [-10, 4oo|= | | Entry <[[0, 4c0], [-10, 4 -,_|
|(.'a]]: SettoZero [0, oo, [-10, 4oof ::-| |,\:—:si!.',1|ruc:m. <[0, +aa]. [0,0]= |
Return <|0, +oc, [0,0]= Exit <[0, +oo|, [0,0]>
ConnectStatement <[0, 400, [0,0]= |
SimpleError

[1BignalDI < [0, +20], [0,0)> b/ Entry <[0, +oo], [0,0]>

|.-\5a—:igmm‘nt < [2, 400, [0,0]>

Return - [2, +oo|, [0,0]=

it <[2, +oc], [0,0]>

|.-‘\:-:si!.';nmc'111. <2, 4ocl, [0.0] ::-| Entry < [2, +=0], [0,0)> DrawShape

_—"'—_F--
[DrawShape < [2, +oc], [00]>

M A

Movel, < [2, +c], [0,0]=

= Movel. < [2, 4o, [0,0]=
Return < |2, +oo|, [0,0]= : - 2

Movel < [2, 4o, [0,0]>

Movel < [2, 4ocf, [0,0]=

Exit < [2, +oc], [0,0]>

Fig. 3: Inter-procedural CFG annotated with values for the
variables in the illustrative example

Fig. 3 shows the inter-procedural control flow graph for our
code. The CFG is annotated using the results of data flow
analysis performed using the interval domain.The first tuple
in the annotated CFG denotes the value of the num variable
h and the second tuple denotes the value of the num variable
11. We use interval abstraction [1] to bound the values of the
variables within desired ranges.

A domain specific requirement is to ensure that the robotic
arm will never cross a specified boundary. We have written
rules in our analysis engine to check whether any point
specified in the code is outside our permissible boundary at
run-time. In the procedure DrawSquare, the fourth MoveL
instruction the point r4 (robtarget) will be outside the
boundary. This can result in potential conflicts with other
robots.

In order to detect this error, we specify the boundary for
the robot arm in a configuration file. The specification has
an interval for each x, y and z co-ordinates. The analysis
algorithm iterates through all the basic blocks of the annotated
inter-procedural CFG (Fig. 3) to check the values of the
variable pos. The value at each basic block is compared with

the value from the configuration file and a warning is raised
when interval falls out of the specified boundary. As illustrated
in Fig. 3, the robtarget variable r4 might be out of the
boundary (its first tuple is a pos variable whose all the co-
ordinates are in the interval [2, 4+00]).

False positives may arise during this process, as we use
interval abstraction. But we will be able to ensure absence of
false negatives since all the values which the variable can take
is considered.

The above approach can also be used to detect many
programming errors like array access out of bounds, integer
overflow, infinite loops etc.

IV. CONCLUSION AND FUTURE WORK

We have presented a program analysis framework to detect
potential runtime errors in the RAPID robotics programming
language. Our framework can serve as a backbone for a
full-fledged program analysis engine that can serve complete
verification and validation requirements for robotics programs.

We plan to augment our framework with timing analy-
sis, WCET analysis and symbolic execution based analysis.
False positives in the result can be reduced by selecting a
more refined numerical domain or a combination of different
domains[17]. The aim is to eventually integrate the static anal-
ysis tool with the robotics development platform RobotStudio
for RAPID.

REFERENCES

[1] Cousot, Patrick, and Radhia Cousot. “Abstract interpretation: a unified
lattice model for static analysis of programs by construction or approx-
imation of fixpoints.” Proceedings of the 4th ACM SIGACT-SIGPLAN
symposium on Principles of programming languages. ACM, 1977.

[2] Robotics, ABB “Technical reference manual RAPID Instructions, Func-
tions and Data types.”, 2014.

[3] Aho, Alfred V., Ravi Sethi, and Jeffrey D. Ullman. “Compilers, Principles,
Techniques.”, Boston: Addison wesley, 1986.

[4] Reps, Thomas. “Program analysis via graph reachability.” Information
and software technology 40.11: 701-726, 1998.

[5] Cortesi, Agostino. “Widening operators for abstract interpretation.” Soft-
ware Engineering and Formal Methods, 2008. SEFM’08. Sixth IEEE
International Conference on. IEEE, 2008.

[6] CLANG. A C family front-end for LLVM. URL: http://clang.llvm.org/

[7] Klocwork static code analysis. URL: https://www.klocwork.com/
products-services/klocwork

[8] Coverity, URL: http://www.coverity.com/

[9] LDRA, URL: http://www.ldra.com/en/testbed-tbvision

[10] Dogliani, F.,, and Comau SpA. “New generation control architecture for
the robot of the "90s.” Science and Technology, 1990.

[11] Lapham, John. “RobotScript: the introduction of a universal robot
programming language.” Industrial Robot: An International Journal 26.1:
17-25, 1999.

[12] Bell, Ron. “Introduction to IEC 61508.” Proceedings of the 10th
Australian workshop on Safety critical systems and software-Volume 55.
Australian Computer Society, Inc., 2006.

[13] Thornton, J. “Robot safety: ANSI/RIA R15. 06-1999 and savvy safe-
guarding for robotic workcells.” Robotics Online, 2002.

[14] Robotics, ABB “Operating Manual RobotStudio.” Vasteras, Sweden,
2007.

[15] Cousot, Patrick, and Radhia Cousot. “Comparing the Galois connection
and widening/narrowing approaches to abstract interpretation.” Interna-
tional Symposium on Programming Language Implementation and Logic
Programming. Springer Berlin Heidelberg, 1992.

[16] AS Language Reference Manual, Kawasaki Industries Ltd., 2002.

[17] Miné, Antoine, “Weakly Relational Numerical Abstract Domains”, PhD
thesis, Ecole Normale Supérieure, 2004.

